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ITERATIVE SCHEMES FOR NONSYMMETRIC AND INDEFINITE 
ELLIPTIC BOUNDARY VALUE PROBLEMS 

JAMES H. BRAMBLE, ZBIGNIEW LEYK, AND JOSEPH E. PASCIAK 

ABSTRACT. The purpose of this paper is twofold. The first is to describe some 
simple and robust iterative schemes for nonsymmetric and indefinite elliptic 
boundary value problems. The schemes are based in the Sobolev space H, (Q) 
and require minimal hypotheses. The second is to develop algorithms utilizing 
a coarse-grid approximation. This leads to iteration matrices whose eigenvalues 
lie in the right half of the complex plane. In fact, for symmetric indefinite prob- 
lems, the iteration is reduced to a well-conditioned symmetric positive definite 
system which can be solved by conjugate gradient iteration. Applications of the 
general theory as well as numerical examples are given. 

1. INTRODUCTION 

In the first part of this paper, we shall describe methods based on the nor- 
mal equations with respect to the Sobolev space H1 (Q) . Methods of this kind 
have been suggested in [10, 2]. In [2], a theorem providing bounds for iterative 
convergence rate was given. Here, we give a somewhat more general version of 
the above-mentioned result and elaborate on its applicability and implementa- 
tion. These methods are particularly robust in that preconditioners can often 
be developed from problems with different boundary conditions, and only lim- 
ited regularity is required on the solutions of the underlying partial differential 
equation. 

In contrast, iterative schemes for nonsymmetric and indefinite systems have 
been studied which are based on the normal equations in discrete L2. The 
analysis of the resulting iterative schemes seems to require full elliptic regular- 
ity. In addition, rapid convergence of the L2-based algorithms requires more 
stringent restrictions on the boundary conditions of the problem from which 
the preconditioner is derived [15]. 

The H1 (Q)-based schemes which we shall describe are simple to analyze and 
robust. Alternative schemes based on generalizations of conjugate gradient and 
conjugate residual methods have been proposed (cf. [10]). Theoretically, none 
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of the generalized schemes can be shown to be asymptotically faster than the 
HI (Q) normal equation method which we shall describe. Extensive compar- 
isons of these methods have been made [10]. These experiments suggest that 
the methods exhibit similar performance when they converge. However, the 
generalized approaches may fail to converge in certain applications. 

In the second part of this paper, we introduce a technique for reducing certain 
indefinite or nonsymmetric problems to ones whose spectrum is contained in 
the right half of the complex plane. We then show how this may be utilized to 
define an easily computable iterative procedure for solving the resulting reduced 
problem. In the symmetric indefinite case, the reduced problem is symmetric 
positive definite and hence, for example, the conjugate gradient method may be 
applied. In the nonsymmetric case, the reduced problem may be solved using, 
for example, the GMRES algorithm (cf. [18]). 

We shall develop the iterative schemes in an abstract way. To do this, we 
assume that we are given a Hilbert space 5" with norm and inner product 
respectively denoted by 1 IIH' and A(., .). The space 5" is compactly and 
densely contained in a larger space L2 with norm and inner product denoted 
by II II and (., *) . We shall be interested in approximating the solution u E 5? 
of the problem 

(1.1) A(u, 0) =(,) for all 0 E , 

for a given function f . The quadratic form A may be nonsymmetric or in- 
definite, but is assumed to be bounded in the norm on Y. 

We shall describe the iterative schemes applied to a family of approximations 
to (1.1). To this end, we assume that we are given finite-dimensional approxi- 
mation spaces 5h c 5Y indexed by h E (O, 1]. The parameter h corresponds 
roughly to an approximation grid size, and problems with larger h have fewer 
unknowns. The approximation Uh E 5h is defined to be the Galerkin projec- 
tion, i.e., 

(1.2) A(Uh,q$)=(f,q) forallq$E5h . 

We shall always assume that (1.1) and (1.2) are uniquely solvable. In appli- 
cations, this is often the case with only minor restriction on the size of h, 
e.g., h < ho for a fixed constant ho. We shall develop various preconditioned 
iterative schemes for computing the solution of (1.2) in the remainder of the 
paper. 

In ?2, we describe the preconditioned iterative schemes based in HI for 
(1.2). These schemes have appeared in the earlier literature [2, 10]. We give a 
simple theorem which provides bounds for their convergence. 

In ?3, we describe iterative schemes in a reduced subspace utilizing a coarse- 
grid approximation. Alternative ways of using a coarse-grid approximation in 
these types of problems have appeared, for example, in [7, 8, 20] as well as in 
the multigrid literature (see [6, 16] and the extended bibliography in [16]). Our 
approach is unique in that it leads to a problem with lesser rank and, in some 
applications, a well-conditioned symmetric positive definite system. 

We present applications in ?4. There, we consider second-order equations 
with first- and zeroth-order terms as well as oblique derivative boundary condi- 
tions. Finally, the results of numerical experiments illustrating the convergence 
of the proposed iterative schemes are given in ?5. 
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2. A GENERAL ITERATIVE METHOD WITH PRECONDITIONER BASED IN H1 

In this section, we provide iterative schemes for (1.2). These schemes will 
be defined in terms of a symmetric positive definite quadratic form Bh on 

xh X 9h . We suppose that there are constants CO and C1 satisfying 

(2.1) CoA(, q) <Bh(q, q) < ClA(q, q) forallq$E5 . 

The form Bh will provide the preconditioner for A. For the subsequently 
described iterative methods to be effective, the ratio Cl/Co should remain rel- 
atively small, even as h becomes small. 

To describe the iterative methods, we first consider the usual computational 
representation of the finite element problem (1.2). This realization of (1.2) 
assumes a given basis {q$i }7nh for ''h. The solution Uh of (1.2) is expanded 
in this basis as 

nh 

Uh =Uh h. 
i=l 

The unknown coefficient vector Uh satisfies the matrix equation 

(2.2) AhUh = Fh, 

where Ah is the "stiffness matrix" with entries (A) A i, qJ) and Fh is 
whr h iste"tfns arx ihetis(h)ij (> >h n hi 

the vector with entries (Fh)i = (f, qi). The preconditioning matrix (Bh)L = 

Bh(q$^ q$J) is analogously defined. Finally, the preconditioner Mh is defined 
to be the inverse of Bh . 

The iterative schemes are based on the following simple observation. The 
solution Uh of (2.2) satisfies 

(2.3) _VUh= Mh A'MAUh = MhA'MhFh, 

where Ah is the transpose of Ah . The matrix v = MhAIMhAh is symmetric 
on Rnh equipped with the inner product 

(2.4) [V, W]h = VtBhW. 

It is immediate that 

(2.5) [V V, W]h = (Ah V)tMh(Ah W) = [V, V W]h . 

Inequality (2.1) and the solvability of (1.2) imply that v is positive defi- 
nite with respect to this inner product. The preconditioned HI -based iterative 
scheme for solving (2.2) is nothing more than the conjugate gradient method 
applied to (2.3) in the inner product (2.4). This leads to the following algorithm. 

Algorithm 2.1. (1) Let an initial approximation Vo to Uh be given (e.g., Vo = 

O) . 
(2) Set Ro = AtMh(Fh -Aho) and PO = MhRo . 
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(3) For i> 0 define: 

R(Pi 

(AhPi)tMh(AhPi) 

Vi+= Vi + aiPi, 

Ri+1 =Ri-aihAtMhAhPi, 
/3 (MhRi+I )tAiMhAhPi 

(AhPh)tMh (AhPh) 

Pi+1 = MhRi+1 - fliPi. 

Remark 2.1. Note that the inner product (2.4) does not appear in the above 
algorithm. Thus, it is possible to use a preconditioner Mh without explicitly 
knowing the corresponding form Bh(., *) as long as an algorithm for comput- 
ing the action of Mh is available. In addition, the above algorithm can be 
programmed so that exactly two evaluations of Mh and one evaluation of Ah 
and Ah are required per iterative step. 

Remark 2.2. The above algorithm is not new. Equivalent versions have ap- 
peared in the literature (e.g., Algorithm II of [2] and Algorithm 9.3 of [10]). 

To bound the rate of convergence of the above conjugate gradient algorithm 
[17], it suffices to estimate constants satisfying inequalities of the form 

(2.6) C2[V, VIh ? [9V, V]h < C3[V, VIh, 

for all vectors V E Rnh . In fact, it is well known that i steps of the above 
algorithm reduces the initial error by a factor which is less than or equal to 

(2.7) pi = 2 

in the norm corresponding to (2.4). 
For the purposes of analysis, it is more convenient to deal with operators 

defined on subspaces of 9' . We start with the case where Bh(, ) = A(., *). 
Let V and W be vectors in Rnh , and set 

nh nh 

v viv i and w = Wi'i. 
i=l i=l ~~~~~~~ h 

Note that MhAh provides a matrix representation of an operator on the sub- 
space 5h . Indeed, if W = MhAh V, then 

(2.8) A(w, ) = A(v, q) for all X E 5. 

We note, in addition, that [V, W]h = A(v, w). 
Let w E 9'h solve (2.8). We can write w = Rhv, where Rh: Y 5'h iS 

defined by Rhv = X with X the unique function in 5'h satisfying 

(2.9) A(X, q) = A(v, q) for all X E h- 

Note that Rh = A-'Ah, where Ah: 5h ` 5h is defined by 

(Ahv, O)=A(v, O) forall 0E 5h 
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and Ah is defined analogously. It immediately follows that 

[XV V, V]h = A(Rhv, RhV). 

Thus, (2.6) can be rewritten as 

(2.10) C21IvII21 < IIR v1121 < C311v|2 1 for all V E Sh. 

Of course, (2.6) is not the same as (2.10) when Bh(, *) $ A(, *). In that case, 
(2.1) and (2.10) can be combined to show that 

(2.11) C2CV2[V, V]h ? [V, V], < C3Cq2[V, V]h. 

Thus, in either case, estimates for the rate of convergence of the above conjugate 
gradient algorithm will follow from estimates of the form of (2.10) provided 
that Bh is a good preconditioner for A on 9h . 

Remark 2.3. As we have seen above, in the case when Bh(, *)-A( ,*), MhAh 
is a matrix representation of the operator Rh . Similarly, MhAh is a matrix rep- 
resentation of the adjoint of the operator Rh with respect to the inner product 
A(., .). Thus, the reformulation (2.3) is developed by first preconditioning the 
system (i.e., applying Mh) and subsequently multiplying by the A(., ) adjoint 
of the preconditioned system. In many applications, A(., *) corresponds to the 
inner product in HI (Q). 

Let the operator R: 9 F 59 ? be defined by Rv = X, where X is the unique 
function in 59 satisfying 

(2.12) A(X,0)=A(v,0) forall0E 9. 

The following theorem provides some hypotheses for proving the lower es- 
timate in (2.10). Note that the upper estimate follows immediately from the 
boundedness assumption on the form A(., *) . For the purposes of this theorem 
and elsewhere in the remainder of this paper, the character C will be used to 
denote a generic positive constant which may assume different values in differ- 
ent places. The constant C will always be independent of the mesh parameter 
h. 

Theorem 2.1. Let Rh and R be defined respectively by (2.9) and (2.12). Assume 
that the following estimates hold: 

(2.13) IIOIIHI < C{IIRhOIIHI + 11011} for all 0 E 5h; 

there exists a fixed positive number y with 

(2.14) II(R-Rh)0II < ChylIOII for all 0 E S; 

for any e > O there exists a constant CE such that 

(2.15) II0|| < CgIlROll + e11011HI for all 0 E Y5. 

Then there exists a constant ho > 0 such that for h < ho, 

II0IIHI < CIIRhOlIHI for all 0 E Sh . 
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This theorem was essentially given in [2]. Its proof is obvious. Applications 
of the theorem are given in detail in ?4. 

3. A COARSE-GRID REDUCTION TECHNIQUE 

We develop a method which utilizes a "coarse-grid solve" in this section. This 
results in a system with a reduced number of unknowns which is either positive 
definite in the case when A is symmetric indefinite, or has a positive symmetric 
part in the general case. 

To describe this technique, we assume that along with our approximation 
space 5?h, we are given a "coarser" subspace 5H C 5?h with mesh parameter 
H > h. We are interested in solving (1.2). 

The algorithm is developed in terms of the projector PH: Y5 5H which 
is defined by PHV = w, where W E SH is the solution of 

(3.1) A(w,q$)=A(v,q$) forall q5E 5H. 

Subsequently, we shall impose sufficient conditions such that the solvability 
of (3.1) is guaranteed provided that H is sufficiently small. Throughout this 
development, we shall assume that the solution of the coarse-grid problems (e.g., 
(3.1)) is relatively inexpensive. We then write the solution of (1.2) as 

(3.2) Uh = PHUh + (I-PH)Uh - 

We next provide a technique for computing (I - PH)uh . Let QH denote the 
L2 projection onto 5?H, i.e., QHV is the unique function in S'H satisfying 

(QHv, w) = (v, w) for all w E 5H. 

Note that (I - PH)Uh satisfies the equation 

(3.3) A((I-PH)Uh ,q)=(f,q$)-A(PHUh, ) forallqE$eh. 
Let Sh-L be defined as the image of 5h under the operator I - QH. Then it 
is easy to see that (I - PH)uh = (I - PH)V for any function v E 5h satisfying 

(3.4) A((I-PH)v, ) = (f, q)-A(PHUh, q) for all X E Sh-. 

We will later impose conditions which guarantee the existence of a unique func- 
tion v E 5'h- satisfying (3.4). The algorithm for the reduced equations is, 
essentially, a scheme for solving (3.4). 

Before stating the reduced algorithm, we provide a theorem which guarantees 
existence and uniqueness of solutions to (3.1) and (3.4). 

Theorem 3.1. Assume that the form A satisfies a Gadrding inequality of the form 

(3.5) C4A(v, v) - C5IIvII2 < A(v, v) for all v e 5 

Assume that there is a fixed y > 0, such that functions w E 5YH satisfying (3.1) 
also satisfy 

(3.6) IIv - w I < CHYIIv - WHIHI for all v E Y. 

Then there exists a positive constant Ho such that for H < Ho, (3.1) is uniquely 
solvable and (3.4) is uniquely solvable in 5h-L . Moreover, there exists a positive 
constant C6 such that 

(3.7) C6A((I - PH)V, (I - PH)v) < A((I - PH)V, (I - PH)v) 

for all v E Yh 
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Proof. The unique solvability of (3.1) under the above assumptions follows 
after applying an argument given in [19]. Inequality (3.7) follows combining 
(3.5) and (3.6). 

We need only show the unique solvability of (3.4) on 5hl . Inequality (3.7) 
implies that the quadratic form on the right-hand side of (3.4) has a nonnegative 
symmetric part which vanishes only on functions v with (I - PH)V = 0. For 
V E hl' 

||VII = |I - QH)(I - PH)V < ||(I - PH)V11 

This completes the proof of the theorem. 

Theorem 3.1 justifies the following three-step algorithm for computing the 
solution Uh of (1.2). 

Algorithm 3.1. (1) Compute PHUh and the data on the right-hand side of (3.3). 
(2) Find the unique function v E 5'h' satisfying (3.4). 
(3) Compute (I - PH)V and set Uh = PHUh + (I - PH)V. 

We propose to solve problem (3.4) by preconditioned iteration where the 
preconditioner is defined in all of 5h . We note that the function v E 5h 
satisfying (3.4) is the solution of the operator equation 

(3.8) Ajfvh Ah(I - PH)V = Qhf -AhPHUh, 

where Qh is the L2 projection onto Sh. By (3.7), Ajl is an operator from 
5'hl onto 5h-L with positive definite symmetric part. As in ?2, let Bh be a 
symmetric positive definite preconditioning form, and define the corresponding 
preconditioning operator Mh: 5?h 5?h by 

Bh(MhX, 0) = (x, 0) for all 0 E h- 

Then, Mh- = (I - QH)Mh is a symmetric positive definite operator on SY'. 
Clearly, the solution v of (3.8) satisfies 

(3.9) MhLAi v = Mh,(Qhf - AhPHUh) 

= (I - QH)Mh(Qhf -AhPHUh) (I - QH)gh. 

To analyze the rate of convergence of iterative algorithms applied to (3.9), we 
must provide some estimates for the eigenvalues of the operator Mhl Ajl . It is 
natural to introduce the inner product 11 = ( (Ml)B-, .)1/2 and prove the 
following lemma. 

Lemma 3.1. Assume that (2.1) and (3.7) hold. Then for any u, V E Yh, 

(3.10) I(Aj u, v)l < CUIIUIIB1IIVIIBI 

and 

(3.11) CL||U|121 < (AhU, U). 

Proof. Let PB: 5?h F ' H be defined by 

(3.12) Bh(PBV, 0)=Bh(V, 0) forallOe5E YH 
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For w, v E 

((Mh1w)1W, MhV) = (W, V) = ((I - PB)W, V) 

= Bh((I - PB)W, Mhv) = Bh((I - PB)W, MhLV)- 

Thus, 

(3.13) ((Mh) 1w , w) = Bh((I-PB)W, w) for all w E5R 

First we prove (3.10). By the boundedness of A, 

(3.14) IA((I-PH)u, v)I = IA((I-PH)u, (I-PB)v)I 
< C||(I - PH)UIHI1 || - PB)V IIH1. 

Using (3.7), we get 

Il(I-PH)UI121 < CA((I-PH)u, (I-PH)u) = CA((I-PH)u, (I-PB)u) 
< C|(I - PH)UIH 1 - PB)UIIHI 

Dividing by I(II-PH)UIJH1 and using (2.1), (3.13), and (3.14) proves inequality 
(3.10). 

We next prove (3.1 1). By (2.1), (3.7), and the minimization property of PB, 

IIUI121 < Bh V - PH) U, (I -PH) u) < CA ((I -PH) u, U) - 

This completes the proof of the lemma. 

The simplest application of the above lemma is the analysis of the linear 
iterative scheme applied to (3.9). It is assumed that an initial iterate vo E 9!h 
is provided. For example, one could take vo = 0. For i = 1, 2, ... , we define 

(3.15) vi = vi-I + T((I - QH)gh -MhA'vi-j) 

Here, T is a positive scaling factor. A trivial calculation gives that the error 
ei = v - vi satisfies 

IIeiIIB1 < Pllei- lll , < p'lIeoII 

where p = (1 - 2TCL + T2CU). Thus, if we take T = CL/CU, then p - 

(1 - CL/C2). As usual, the linear iterative method requires estimation of a 
parameter. Note, however, that a smaller value of T above will give rise to 
convergent iteration with a somewhat slower rate. 

The above algorithm requires exactly one evaluation each of M-L and Ah 
per iterative step. This means that the action of the operator (I - QH) must 
also be computed. To avoid the computation of QH, we develop a variation of 
the above procedure. 

Note that Algorithm 3.1 only requires the computation of (I - PH)V. With 
this in mind, we consider the following variation of (3.15). Let vo E 5'h be 
given, and set Oo = (I - PH)TiO. For i = 1, 2, ... define 

(3.16) Vi = Vi-1 +T(I-PH)(gh-MhAhJi-1). 

Setvo = (I - QH)YO. By applying (I - PH) to (3.15), it is easy to see that 
vi = (I - PH)vi, where vi is the iterate in (3.15). Thus, vi converges to 
(I - PH)v with a rate which is bounded by the convergence rate of (3.15). In 
addition, (3.16) avoids the computation of the action of the operator (I - QH) - 
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For completeness, we describe (3.16) in terms of the computational basis for 
5h already used in ?2 as well as a computational basis {qi} for 5?H Let ~~~~~~~~~~~~ 
AH denote the stiffness matrix for the form A with respect to the basis, and 
IH denote the matrix operator which transforms coefficients corresponding to 
a function in 5?H into the coefficients which represent the function in the basis 
for 5 h . We note that IHA4H1 IHAh is the matrix representation for the operator 
PH. Similarly, MhAh is the matrix representation of the product MhAh. For 
convenience, we shall denote by P-H the matrix operator I - IfHA4H1HItAh and 
by Gh the vector with entries { (gh, qi) } . Let Wo denote the coefficients of 
the function vUo in the basis for 5'h and set Wo = PH WO . Then the vector of 
coefficients Wi corresponding to the function vi is given by the iteration 

(3.17) W, = W, 1 + -rPj (Gh - MhAhJWi1). 

The linear iteration (3.15) is also related to a natural two-grid multiplicative 
iterative method for (1.2). Given an initial iterate uo E 5h, we define for 
i = I , 2 , . . . 

(1) wi =ui1 + AH QH(f-AhuIl)- 
(2) ui = wi + TMh(Qhf - Ahwi) . 

It is easy to see that the error i = Uh - Ui satisfies the product formula (cf. [4]) 

ji = (I - TMhAh) (I - PH)ei- 1 . 
Let vO = (I - QH)UO. A simple mathematical induction shows that ui and vi 
(generated by (3.15)) differ by a function in 5?H. Consequently, 

Ilen IIHI = 11(I -TMhAh)(I - PH)en-1 IIHI 

(3.18) = 11(I -TMhAh)(I - PH)en-I IH 

< Clen-llBl< Cpn -loIB < Cpn-Ile1 

Thus, the multiplicative algorithm converges at the same rate as the simple 
linear algorithm. 

An analysis of an unscaled variation of the multiplicative algorithm was pre- 
sented in [20]. There are two disadvantages of the unscaled approach. The first 
is that it essentially requires the use of a sufficiently accurate preconditioner, 
i.e., the ratio C1 /Co needs to be less than 1 + c for a sufficiently small value of 
e. The second disadvantage of the unscaled approach is that the analysis only 
applies if the nonsymmetric part of the equation is of lower order (see Remark 
4.1). 

Remark 3.1. It is obvious that the operator Mh in (3.16) can be replaced by 
any other operator Mh provided that Mhq - Mhq is in 5H for all q E 5h . 
This means that it is possible to skip the coarse-grid solves when Mh is defined 
by domain decomposition or multigrid. The same replacement is valid in the 
case of the multiplicative algorithm above, since the functions ui and vi will 
still differ by a function in SH and hence (3.18) will still hold. 

The linear algorithms given above require estimation of the iteration param- 
eter. As an alternative, the HI-normal equation method of ?2 can be applied 
to the reduced equation (3.8). This is equivalent to applying conjugate gradient 
iteration in the inner product ((Mhl)'-I, *) to the preconditioned equation 

(3.19) MhL(Ah1)tMhLAjlv = MhL(A fr)gh. 
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Applying Theorem 3.1 and Lemma 3.1 shows that the condition number of 
the operator appearing in (3.19) is bounded by (CU/CL)2. Thus, m steps of 
conjugate gradient results in an error reduction bounded by 

2(-CLCU) m 
I + CL/CUJ 

in an appropriate norm. The conjugate gradient iteration shows a theoretical 
acceleration of convergence over the linear method. As in the case of linear 
iteration, it is possible to implement an equivalent cg-like iteration for (I-PH)v 
which avoids evaluation of the operator QH. 

As in the symmetric case, there are several descent methods which can be 
directly applied to (3.9). One such method suggested by many authors is the 
GMRES method [ 18]. Mathematically, GMRES provides an algorithm for com- 
puting a best approximation in a certain Krylov space. In our application, 
one assumes an initial approximation v0 E 5',I and defines the Krylov space 
m to be the span of the vectors ro, Mh'Ajlro,..., ( where 

rO = M I(Qhf - AhPHUh - AhVo) . The improved approximation vm is equal to 
v0 + x, where x is the unique function in 5^l which minimizes the residual 
error liro - MhLA ld IBi over all functions 0 E m. 

We develop the computational version of GMRES following the development 
of (3.17), the computational version of (3.15). We start with the algorithm 
on 5hl, then introduce a version of the algorithm for computing (I - PH)V 
directly, and finally present its implementation in terms of matrix operators. 
Details of the two intermediate algorithms are left to the reader. We present 
the implementation form of GMRES which provides the coefficient vector of a 
function converging to (I - PH)V: 

Algorithm 3.2. (1) Let Wo be given and set Wo P' WO. 
(2) Set Ro = Fh -,AhIHAiHHIHFh - Ah Wo and Vl- PHR MhRo/(RPH MhRO) 1/2. 
(3) For j= 1, 2, ..., m define: 

for i= 1, 2, ...,j define 

hi= VitAhVj; 

V?+1 = P MhAh VJ- hij Vi; 

hj+1 j = (Vil+A V)/2 1-1 ~ ~ ~ i= 

Vj+ I= Vj+=lhj+ ,j- 

(4) Define Wm = W0 + x, where X = 1i ym i Vi, and the coefficients Ymi 
are chosen to minimize the quantity (Ro - Ahx)tMh (Ro - Ahx)- 

Remark 3.2. Steps (2) and (3) above are essentially the Arnoldi algorithm for 
implementing a Gram-Schmidt orthogonalization of the Krylov space 5m. In 
general, the use of such an orthogonal basis results in a more stable numerical 
algorithm. 

Remark 3.3. A particular efficient technique for implementing the minimization 
process in step (4) is given in [18]. 
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Remark 3.4. The above algorithm becomes somewhat inefficient if m becomes 
too large. Let n denote the number of unknowns. Then implementation of 
the above algorithm requires storage on the order of mn and operations on the 
order of nm2. Accordingly, it is often convenient to fix m and repetitively 
restart the algorithm. 

The use of the coarse-grid solve is fundamental for the application of GMRES 
in that it results in a system with positive definite symmetric part. In fact, 
GMRES may fail as an iterative procedure when applied to general nonsym- 
metric problems. It is known (see [18]) that the rate of convergence of GM- 
RES when applied to a problem with a positive definite symmetric part can be 
bounded in terms of the smallest eigenvalue of the symmetric part and the norm 
of the original operator. Let em = (I - PH)v - Vm, where Om is the function 
with coefficients Wmi. Applying the above-mentioned analysis shows that 

(Mha-fem, A-Lem) < (1- a2/f2)m (MhALeo, Ah eo). 

The constant a above is the smallest eigenvalue of the symmetric part of the 
operator Mh Al . By Theorem 3.1 and Lemma 3. 1, a > CL . The constant ,B 
above is the norm of the operator MhjAjl . By Theorem 3.1 and Lemma 3.1, 
,B < Cu. Thus, the theoretical convergence rate for GMRES is no better than 
the simple linear algorithm and worse than the HI -normal method. 

In the case when Ah is symmetric, Theorem 3.1 and Lemma 3.1 imply 
that A1l is symmetric positive definite. Consequently, we can apply the 
conjugate gradient to the preconditioned equation (3.9) (in the inner product 
((Mj-)-', *)) . Applying Theorem 3.1 and Lemma 3.1 gives that 

CL((M-L)1U, u) < (A-Lu, u) < CU((MhL)-1u, u) for all uM - h 9. 

Hence, the condition number of the operator Mh-Ajl is bounded by Cu/CL, 
and the error reduction for m steps of this conjugate gradient algorithm is 
bounded by 

2 1 - C/LCU i 

in an appropriate norm. 
The following iteration for computing the coefficients of the vector (I - PH)V 

can be developed from the conjugate gradient algorithm discussed above. 

Algorithm 3.3. (1) Let Wo be given and set Wo = P' WO. 
(2) Set Ro = Fh - Ah IHAH IHFh - AhWo and Po - P'lMhRo . 
(3) For i > 0 define: 

aiip 
?ti tAhPi' 

Wi+- = Wi + aiPi, 

Ri+I = Ri- aiAhPi, 

- (PiHMhRi+l)t AhPi 

PP=AhPi 

Pi= PiMR+I - flp 
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Remark 3.5. Algorithm 3.3 can be programmed in such a way as to only require 
one application of each of the matrices Ah, P1H, and Mh per iterative step. 

4. APPLICATIONS 

In this section, we consider applications of the results of the previous sections 
to second-order elliptic boundary value problems. Let Q be a domain in d- 
dimensional Euclidean space, and consider the problem 

(4.1) 5u=f inQ, 
(4.2) u=0 on FD, 

(4.3) au + f(x)u =O on FN. 

Here, aQ = FD U FN and a denotes the outward conormal derivative on OQ . 
The operator 2 is given by 

Yu=- iE 0'aij(x) OU 
__:b 

x ~ 
()U 

i,jl axi 'i aXj + '( )axi+() 

We assume that the matrix {aij (x) } is symmetric, uniformly positive definite, 
and bounded. We also assume that /3 is in L??(aQ). 

We shall also consider oblique derivative problems when d = 2. In this 
case, we require that aQ be piecewise smooth and let t denote the (positively 
oriented) tangential direction along aQ. The condition (4.3) is replaced by 

(4.4) 
au 

+ fl(x)u + v(x) 
au 

=O onFN. 

We assume that a(x) is smooth on the smooth arcs of FN. In addition, we 
assume that each smooth part of FN has endpoints on a JD. This makes the 
problem variational (cf. ?4.4.3 of [12]). 

To develop and analyze this example, we shall need to use Sobolev spaces on 
Q and aQ. For a nonnegative 1, the Sobolev space of order 1 on Q will be 
denoted H'(Q) = W2'(Q) with norm 11 * 11, (see Definition 1.3.2.1 of [12]). On 
the boundary, the space of order 1 will be denoted HI(aQ) with norm I e I . 

We next provide the weak formulation of (4.1)-(4.4). Define 5' to be the 
functions in H'(Q) whose trace vanish on PD. Let (., *) denote the L2(Q) 
inner product and (., *) denote the L2(an) inner product. The weak formu- 
lation of (4.1)-(4.4) is: Find u E 52 such that 

(4.5) A(u, V/) = (f, V) for all V E S 

Here, the form A is defined by 

(4.6) A(i, ) = E (aij, ,) + a i(biI,ax7 ) 

+(cvI,6)+ KflvI+r a 
6). 

By convention, we take a = 0 when d $& 2. The bilinear form A is bounded 
with respect to the norm in HI(Q) (cf. ?4.4.3 of [12]). 
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Remark 4.1. Many analyses of iterative schemes for the solution of the discrete 
systems which result from the numerical approximation of nonsymmetric and 
indefinite boundary value problems require that the nonsymmetric part of the 
form A be of lower order (e.g., [6-8, 14, 15, 20]). This means that AN(V, w) = 
(A(v, w) - A(w, v))/2 can be bounded by 

(4.7) JAN(V, W)l < CjjVlll_,allWl,a 

for some a E [0, 1]. Inequality (4.7) does not hold in the case of boundary 
condition (4.4). In contrast, the theory presented in this paper is applicable and 
shows that the corresponding iterative schemes remain effective. 

To verify the hypotheses of the theorems in the previous sections, we shall 
use the equivalent inner product 

(4.8) A(y,I 0)= aE (ai1 + (vI ,) 

on HI(Q) 
We note that the Garding inequality (3.5) holds for the form A. In fact, the 

term associated with the tangential derivative results in no difficulty, since 

(at ' ) (at " ) ("at) 
and hence 

(4.9) Kat4 ' ) 2 at 

The remaining terms are handled by standard perturbation arguments. 

Remark 4.2. Many approaches for providing estimates for nonsymmetric and 
indefinite problems require that the form differs from a "nice" form (e.g., 
A(., .)) by a lower-order perturbation. Our theory only requires that the sym- 
metric part of the form differs from a nice form by a lower-order perturbation. 
Note that the oblique derivative term in (4.4) has the same strength as the 
second-order derivative terms in (4.1). However, (4.9) shows that the term 
(a, p) is weaker than A(, ). 

We shall assume that (4.5) and its adjoint have unique solutions. In addition, 
we assume that solutions of adjoint problems have a modest amount of elliptic 
regularity. Specifically, given g E L2(Q), let v solve 

A(q, v) = (q, g) for all q E 5. 

We assume that for some y E (0, 1], there is a constant C not depending on 
g E L2(Q) such that 

(4.10) IIVIIi?Y ?< ClIgl. 

Estimates of the form (4. 1 0) for many applications fitting into the general frame- 
work of problem (4.1)-(4.4) can be found in various references. We shall quote 
some of these results in the Appendix. In addition, we shall provide a proof of 
(4.10) in the case of boundary condition (4.4). 

We approximate the solution of (4.5) by using the finite element method. 
This involves the use of a sequence of approximation spaces {5' h} which are 
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subspaces of 52 and indexed by h E (0, 1]. Many examples of such construc- 
tions can be found in [1, 9]. We put very little restriction on these spaces other 
than the requirement that they satisfy standard approximation properties. In 
particular, we allow mesh refinement in all of our applications. In this case, the 
parameter h corresponds to the size of the largest triangle or finite element. 

For the purposes of developing iterative algorithms, we only require that the 
subspaces satisfy 

(4.1 1 ) inf llv - ql$l < ChvH112- 

The inequality (4.11) holds with fixed C and for all v E H2(Q) n Y. This 
does not exclude the use of higher-order spaces and refinement in order to obtain 
better solution accuracy. 

The Galerkin approximation Uh E 9h to the solution u of (4.5) is defined 
by (1.2). Inequality (3.6) follows applying the standard finite element duality 
technique [1, 9], (4.10), and (4.11). Thus, we have shown that the hypotheses 
of Theorem 3.1 hold for this application. The following theorem shows that the 
hypotheses of Theorem 2.1 also hold for this application. 

Theorem 4.1. Under the above assumptions and definitions of 5?, 5'h, Ah, and 
A, (2.13)-(2.15) hold, i.e., the hypotheses of Theorem 2.1 hold. 

We shall use the following lemma in the proof of Theorem 4.1. Its proof will 
be given in the Appendix. 

Lemma 4.1. Let 0 < y < 1/2 be fixed. Given c > 0, there exists a constant 
Ce,y such that for all q$eH1(Q) and iE H1I+(Q), 

(4.12) A(q, M/) < (Ce, y 11q$1 + c1q$1 l)) V/I 1+y 

Proof of Theorem 4.1. We first prove (2.13). By (3.5), for 0 E Yh, 

(4.13) A(6, 0) < CZ I(C4A(6, 6)-C5HH2+ C5HOH2) 

* < C-l(A(d ~0) + C5110112) = CZ I((R0 11+ l0112)- 

Inequality (2.13) follows from (4.13) and obvious manipulations. 
We next prove (2.14). Let Ph denote the elliptic projection onto the space 

5?h, i.e., Ph: F- 1- '5h be defined analogously to PH in (3.1). From the def- 
inition, it is immediate that Rh = PhR. Inequality (3.6) with h replacing H 
gives 

J (R-Rh)q11 < Chy IRqI . 

Note that R is defined by the relation 

A(Rv, q) = A(v, q) for all $ES'E. 

Taking q = Rv and using the boundedness of A(., ) gives 

(4.14) 1IRvlll < Cllvlll. 
Inequality (2.14) follows. 

Before proving (2.15), we first define some additional notation. Let 5-1 

denote the dual of Y2, i.e., 5- 1 is the set of distributions on Q for which 
the norm 

Ilull_l= sup (u, 1q) 
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is finite. In addition, we define the following operators: 
(1) A: 59 F- o-1 by Aw = v, where v is the unique function in 5-1 

satisfying 
(v, q)=A(w,q$) for all q E Y. 

(2) A: 59 - 59-l by Aw = v, where v is the unique function in 59- 
satisfying 

(v, q)=A(w,q$) for all E Y. 

(3) T*: 59-1 F 59 by T*w = v, where v is the unique function in Y 
satisfying 

A(q, v) = (w, q) for all q E Y. 

(4) T: 5-1 | 5Y by Tw = v, where v is the unique function in Y 
satisfying 

A(v, q)=(w,q$) for allq E . 

Note that R = TA. 
Wenowprove (2.15). For ue5Y, 

lull2 =A(u, T*u) = (Au, T*u) = A(TAu, T*u). 

Applying Lemma 4.1 and (4.10) and noting that R = TA gives 

(4.15) Ilull < C(Ce,yIIRuII + 1IIRulll) 
Inequality (2.15) follows immediately combining (4.14) and (4.15). This com- 
pletes the proof of the theorem. 

5. NUMERICAL EXPERIMENTS 

In this section, we provide the results of numerical examples illustrating the 
theory developed in earlier sections. We shall consider a model problem in 
two-dimensional space. Specifically, we consider problem (4.1)-(4.4) where 

Q = [0, 1] x [0, 1] and Yu = -Au + aux + buy - cu. 

We shall consider three numerical examples. The first is the symmetric indefi- 
nite case (a = b = 0). The second example adds nonsymmetry using nonzero 
a, b. The final example illustrates the oblique derivative problem (i.e., bound- 
ary condition (4.4) with a t 0). 

The sequence of subspaces are the usual finite element approximation spaces. 
Specifically, the domain Q is first partitioned into m x m square subdomains 
of side length 1/m. Each smaller square is then divided into two triangles by 
one of the diagonals. The approximation space 59h is defined to be the set 
of functions which are continuous on Q, piecewise linear with respect to the 
triangulation, and vanish on 1D. In the first two examples, 1D is all of &Q. 
In the last example, PD = 1Q/1N, where FN = {(0, Y)ly e (0, 1)} . 

We seek the Galerkin solution Uh E 59h satisfying (1.2), where A(-, *) is de- 
fined by (4.6). For all of our examples, the preconditioner for (1.2) is developed 
from the form corresponding to the Laplace operator, 

(5.1) D(u, 0) = J (uxx + uyqy + cl uq) dx dy, 
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where cl is a nonnegative constant. Specifically, the preconditioning operator 
Mh is defined by applying one V-cycle of a multigrid procedure corresponding 
to the form D(-, *) on the subspace 59h (cf. [3, 5]). The problem corresponding 
to (5.1) is solved exactly on the coarsest grid of mesh size 1/4. In addition, one 
sweep of Gauss-Seidel smoothing was used on the way down with a sweep in the 
opposite direction on the way up. This results in a symmetric preconditioning 
form Bh(-, -) 

One factor which can be used to interpret the efficiency of the proposed itera- 
tive schemes is the number of iterations required to achieve a certain accuracy. 
Specifically, we define NI to be the number of steps required to reduce the 
initial error by a factor of 10-6, i.e., 

IIeNI 11 <10-61Ieoll, 

where ei = Uh - Vi, Uh is the solution to (2.2), and Vi is the ith iterate in the 
given algorithm. 

Example 1. For our first example, we set a = b = 0, let FD = aQ, and consider 
various values of c. We compare three methods for solving this problem. The 
first uses Algorithm 2.1 with preconditioner defined taking cl = 0 in (5.1). 

TABLE 5.1. Algorithm 2.1 applied to Example 1 with c1 = 0 

1/h c K(.s) NI 

32 115 1143 51 

64 115 1024 51 

128 115 1011 51 

32 150 2339 59 

64 150 2294 61 

128 150 2379 61 

TABLE 5.2. Algorithm 2.1 applied to Example 1 with cl = c 

1/h C K(.V) NI 

32 115 209 59 

64 115 195 59 

128 115 191 59 

32 150 214 70 

64 150 159 71 

128 150 171 72 
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The second again uses Algorithm 2.1 but with cl = c as suggested in [11]. 
The final uses the subspace reduction technique of ?3 and Algorithm 3.3. 

Tables 5.1 and 5.2 illustrate the effect that the parameter cl in (5.1) has on 
the convergence behavior of Algorithm 2.1. The reported condition numbers 
K(,V) are significantly larger in the case when cl = 0 than in the case of cl = c. 
However, the number of iterations required for a given accuracy is less in the 
case of cl = 0. The large condition numbers in the case of cl = 0 are due 
to a few large eigenvalues. In such instances, the conjugate gradient algorithm 
converges faster than predicted by the condition number alone. 

Table 5.3 illustrates the effect which the coarse-grid reduction technique has 
on the convergence rate of the resulting scheme. The *'s in the first row (H = 
1/8) indicate that the preconditioned system failed to be positive definite for 
that value of H. This shows the necessity of taking H sufficiently small. 
The remaining rows show the substantial benefit resulting from the coarse-grid 
solve once the threshold H < Ho has been reached. Since the reduced system is 
positive definite, conjugate gradient iteration can be applied and half the number 
of operator evaluations are required per step. Note that we get drastically 

TABLE 5.3. Algorithm 3.3 applied to Example 1 with c1 = 0 

1/h 1/H c K(Mh-L A -) NI 

32 8 115 * 

32 16 115 1.84 7 

64 16 115 2.21 8 

128 16 115 2.33 8 

32 16 150 2.26 7 

64 16 150 2.81 8 

128 16 150 2.94 8 

TABLE 5.4. Algorithm 2.1 applied to Example 2 

1/h C K(v) NI 

32 115 2723 52 

64 115 2738 52 

128 115 2892 52 

32 150 4466 66 

64 150 5643 67 

128 150 5948 69 
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smaller condition numbers, and far fewer iterations are required for convergence 
(compared to the results in Tables 5.1 and 5.2). 

Example 2. This example illustrates the convergence behavior of the iterative 
algorithms developed earlier when applied to a nonsymmetric and indefinite 
problem. This time we take a = 1, b = 2, vary c, and, once again, take 
FD = AQ. All of the remaining results are for cl = 0. 

Tables 5.4 and 5.5 illustrate the effect that the coarse-grid reduction has on 
this problem. 

Table 5.4 gives results for Algorithm 2.1, whereas Table 5.5 gives similar 
results but for the conjugate gradient method applied to the reduced equations 
(3.19). Once again we see that the coarse-grid reduction technique leads to 
algorithms with significantly lower condition numbers which converge to a given 
accuracy in far fewer iterations. The large condition number in the first row 
of Table 5.5 is in agreement with the failure of convergence observed in the 
first row of Table 5.3. However, the method of Table 5.5 (based on the normal 

TABLE 5.5. Conjugate gradient applied to (3.19); Example 2 

l/h 1/H c K(Mhl(Ah )tMhIAh ) NI 

32 8 115 1750 28 

32 16 115 3.42 10 

64 16 115 4.93 12 

128 16 115 5.46 12 

32 16 150 5.36 11 

64 16 150 8.49 13 

128 16 150 9.43 13 

TABLE 5.6. Algorithm 3.2 applied to Example 2 

1/h 1/H c NI 

32 8 115 16 

32 16 115 7 

64 16 115 8 

128 16 115 9 

32 16 150 7 

64 16 150 8 

128 16 150 9 
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equations) is robust and will converge with any value of H but at a possibly 
slower rate. 

Finally, Table 5.6 gives iteration counts for GMRES (Algorithm 3.2) applied 
to this example. Note that the iteration counts of Table 5.6 are somewhat better 
than those of Table 5.5. This is due to the fact that the nonsymmetry of this 
example is very weak. 

Example 3. For the final example, we consider the oblique derivative problem. 
Specifically, we set a = b = c = 0, FN = {(0, Y)jy e (0, 1)}, and o(x) = a 
for various values of a. In this case, the equations always have a positive 

TABLE 5.7. Algorithm 2.1 applied to Example 3 

1/h a K(,1) NI 

32 1 3.50 12 

64 1 3.63 12 

128 1 3.66 13 

32 10 159 43 

64 10 169 68 

128 10 170 88 

32 50 2380 72 

64 50 2514 128 

128 50 2515 202 

TABLE 5.8. GMRES applied to (5.2); Example 3 

Ilh a NI 

32 1 16 

64 1 17 

128 1 18 

32 10 148 

64 10 154 

128 10 160 

32 50 820 

64 50 855 

128 50 860 
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definite symmetric part, and hence the coarse-grid reduction technique will not 
be applied. 

Tables 5.7 and 5.8 (see p. 19) illustrate the convergence behavior of Algorithm 
2.1 and GMRES directly applied to 

(5.2) MhAh Uh = MhFhE 

To keep storage requirements manageable, GMRES was restarted every ten it- 
erative steps. Algorithm 2.1 always converged faster than GMRES for this 
application. In fact, for larger a, the HI-normal approach provides a much 
more effective algorithm. 

6. APPENDIX 

In this Appendix, we shall discuss the estimates (4.10) and Lemma 4.1. We 
first provide a proof that (4.10) is satisfied for some examples with boundary 
condition (4.4). We finish by proving Lemma 4.1. 

Inequality (4.10) in the case of Dirichlet boundary conditions and domains 
with polygonal boundaries has been proved in [13]. We will prove this estimate 
with boundary condition (4.4) under some further assumptions. Specifically, 
we consider the problem 

-Au = f in Q, 

(6.1) u = 0 on FD, 
u 

+ o(x) -u =0 onrN, 
av ~at 

where Q has a polygonal boundary and a is constant on each connected com- 
ponent of FN. If FD is empty, we require that 

jfdx = 0 and judx = 0. 

The first step is to provide an LP estimate for the solution u of (6.1). For 
nonnegative s and 1 < p < oo, we denote by WpsJ(Q) the usual Sobolev space 
with norm 11 - 11s,p given, for example, by Definition 1.3.2.1 of [12]. Combining 
Theorems 4.3.2.4 and 4.4.4.13 of [12], using the uniqueness of solutions to 
(6.1), and examining the behavior of the singular functions associated with the 
boundary edge angles and the boundary conditions shows that there is a p with 
1 < p < 2 such that 

(6.2) 11U112,p < Cllf10o,p. 
We next note the following imbedding inequality (see Theorem 1.4.4.1 and 

the remark thereafter in [12]): For each 1 < p < 2, there exists a constant Cp 
such that 

(6.3) 110113-2/p < Cp|q$112,p for all q E W2(Q). 
Combining (6.2) and (6.3) and using the fact that IIfIIo,p < ClIflI proves (4.10) 
with y = 2 - 2/p. 

Remark 6.1. There is no difficulty in replacing the Laplacian in (6.1) by the 
Laplacian plus lower-order terms. Generalizations to variable-coefficient opera- 
tors and boundary conditions seem possible but are tedious and hence will not 
be treated here. 
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We now provide a proof of Lemma 4.1. We first consider the derivative terms 
in (4.8). Let E denote the extension operator given by Theorem 1.4.3.1 of [ 12]. 
For a function v defined on Q, let v denote the extension of v by zero to 
Rd. Since y < 1/2, Corollary 1.4.4.5 of [12] gives that the norm Ill II2wY(R2) is 
equivalent to the norm llvlly for all v E HY(Q). Thus, for q E H1(Q) and 
V E H1+Y(Q), 

( aoq 0 y ) ((a(Eq) \ ( ) 

where Y denotes the Fourier transform. By the Schwarz inequality, 

(6.4) (0Xj ' ?xj) ~<C (d (1 + lC12)y lJ(EO)(C)l2d ) lI 1+2 

< (C0xy11011 + 511011I)11 VI1+Y 1 

where a > 0 is arbitrary. The lemma follows by summing (6.4) and obvious 
manipulations. 
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